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Note 

Exponential Difference Operator Approximation 
for the Sixth Order Onsager Equation 

INTRODUCTION 

The construction of difference approximations for complicated operators by 
building them from successive applications of standard difference operators can be 
algebraically tedious and therefore prone to the introduction of errors. Standard 
methods for generating difference approximations based on Taylor series also 
frequently yield poor acccuracy when the operators involve variable coefficients or 
when variable mesh zoning is used. The finite element method is a more systematic 
method of approximation well suited to variable meshes and complicated boundary 
conditions, but again the computation of coefficients can be algebraically very 
tedious if the partial differential operators become at all complicated. 

An alternative is to use exponential difference operator approximation formulas 
[l-4]. These are easy to program, but do not yet seem to be widely applied. In part 
this may be because the advantages they have in ease of application and accuracy are 
not so apparent in the low order derivative uniform mesh problems which have often 
been used to demonstrate them. This note gives an application of these methods to a 
complicated approximation problem involving sixth order derivatives on a 
nonuniform mesh. 

The equation discussed describes the flow in a countercurrent gas centrifuge and is 
of practical interest in the field of uranium enrichment [5-81. It is derived from the 
Navier-Stokes equations after linearization and the dropping of a number of terms. 

A one-dimensional form of the sixth order Onsager equation is 

L6v = We”w,>,,L,, =f(x), 

with boundary conditions at x = 0, 
w = 0, 

wx = 0, 

@“(e”w,),,>, = Y, 
at x=x,, 

(1) 

(2) 

(3) 

(4) 

w = 0, 

(e%,), = 0, 

(e”(e”w ) ) = 0. x xx xx 
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(5) 

(6) 

(7) 
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As one can appreciate after a little reflection and experimentation, the construction of 
a finite difference or finite element approximation to this equation and boundary 
conditions is not a trivial task, yet the method to be described is very easy to 
program and debug. This is an important point as in many applications the time and 
costs required to set up and program a solution method are many times the actual 
cost of computing solutions. 

METHOD AND TEST PROBLEMS 

The key to the method is to note that over a small interval the function f can be 
replaced by a constant. In practice f could represent a complicated dependence on x 
in one dimension or it could represent an operator with respect to another coordinate 
in the case of two dimensions. Whichever the case, one replaces f by a constant C,,. 
This constant is then regarded as an unknown in developing the difference approx- 
imation for L6 at the kth mesh point. The example equation 

L6yl = c,, 63) 

can be solved exactly to obtain an analytical approximation for w in the 
neighborhood of the kth mesh point. This solution introduces six additional unknown 
constants Ci. Most n th order differential operator equations of this form can be 
integrated exactly resulting in a closed form solution with n + 1 unknown constants 
Ci, but even cases which can only be solved by series methods can be included with 
little additional computation. The analytical solution to L6w = C, obtained by 
successive integrations is 

y = - C,(&x3 + ix’ + +4x + g) eCzx 

-C2($x2+~x++)e-2”-C3(fx+~)e-2x 
- jCse-2x - C,(x + 1) ePX - C6ePX + C,. (9) 

To construct the difference approximation for the example equation at an interior 
mesh point k, one requires that the analytical solution with the seven unknowns 
including C, equal the finite difference solution at mesh points k - 3, k - 2, k - 1, k, 
k + 1, k + 2, and k + 3. Thus one has a set of seven linear equations in the seven 
unknowns Ci which must be solved at each interior mesh point k; 

-(&Xi+i + $Xi+i + -fxkti + $$) e-2xk+iClk, 

-(ix:+ i + fxk+i + A$) eC2xk+iC2k, 

-(f~,+~ + 5) e-2x~+iC3, - $e-2x~+iCqk, 

-(x*+~ + l)e-XL+C5k - e-Xk+iC6k + Ck = ykti, (10) 

where i= -3, -2, -1, 0, 1, 2, 3. 
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Since Clk = L6t+vk one obtains an approximation for L6yk in terms of the value wk 
and its six neighboring mesh values from the top row of the inverse of the 7 X 7 
matrix of coefficients multiplying the column vector (C,,, C,, , Cjk, Cdk, CSk, C6,, 
C,,J. Thus if i goes from -3 to +3, then Eq. (10) can be written 

Ai+4,j(Xk) cj,k= Vk+i (11) 

whitih can be solved for the Cj, yielding 

The approximation for L“ty obtained from Eq. (8) is then 

(e”(e”w,),,>,,,l,=,, - Clk = i Bk.i+4Wk+iv 
i=-3 

(12) 

(13) 

where Bki = A ;f(x,J. 
These steps have been written out in detail to show the nature of the approx- 

imation, and to state it in a form in which boundary conditions are easily treated. 
Normally one would be able to write the seven independent functions appearing in 
Eq. (10) by inspection. In the present case these functions are 

y,(x)= 1, eex, xemX, eezX, xeezX, x*e-**, x3emzX. (14) 

The coefficients Bki in the difference approximation at the kth interior mesh point 
must satisfy 

L6V’n(X,)= i BkiWn@k+i-4) (15) 
i=l 

which yields a system of seven equations, one for each w,,, in the seven unknown 
values of B, at the kth mesh point. 

Boundary conditions are easily included by replacing the equations that would 
otherwise involve virtual boundary mesh points with the equations for the appropriate 
derivatives at the boundary. In the example problem at the boundaries xi = 0, 
X k max = x, the function values are zero, and need not be computed. At the mesh 
point x2 the interior equations (10) for i = -2 and -3 are replaced by using Eq. (9) 
in the analytical boundary conditions (3) and (4), yielding 

4c12 + 3c22 + 2c32 + cd2 + c62 = 0, (1’3) 

c32 = Y* (17) 

At the mesh point x3 the interior equation (10) for i = -3 is replaced by Eq. (16). 
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Similarly at the mesh point xkmax,i the interior equations (10) for i = 2 and 3 are 
replaced using Eq. (9) in the analytical boundary conditions (6) and (7), yielding 

and 

-T ‘(x:,,, + 3x:,,, + 6xkmax + 6) e-xkmaxC1, 

-1. 2(x:,,, + 2xkmax + 2)emxkmW2, 

- (xkmax + 1) e-xkmaC3 - e-XkmaxCq + C, = 0, (18) 

ClXk Illax +c,=o. (19) 

Finally at mesh point xk max-2 the interior equation (10) for i = 3 is replaced by 
Eq. (18). 

Since boundary condition (4) is inhomogeneous, in the present case the 
corresponding form of Eq. (13) for the mesh points at x2 is 

Thus at the end points of the mesh the approximation for the differential operator 
involves a linear combination of the interior mesh values and the derivatives of v at 
the boundary. In the present example the remaining equations are: 

at x=x3, 

(e”(e”wxLxLxxlx=x, = 5 B3,i+4W3+iy 
i= -2 

(ex(exW,),,),,I,=.,man-t= C Bkmax-2,i+4Wkmax-2+i, 
i= -3 

at x=xkmax-I 

(21) 

(22) 

(23) 

One obtains a banded discrete set of equations approximating differential equation 
(1) and boundary conditions (2~(7) by equating the expressions for the operator L”, 
Eqs. (13), (20)-(23), to the corresponding mesh point values fk =f(x,). 

The mesh point values vk obtained from the solution of this banded system of 
linear equations are exact for the case f = constant and very good approximate 
solutions for general f(x). The programming of the method is simple and aided by the 
circumstance that one can usually find an exact solution for the case f = 0 with which 
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to compare to check for coding errors. In the present example the solution to the 
homogeneous case f = 0, y = 1 is 

y(x)=-$4(x+ I)e-2X+fe-X (24) 

in the limit x, + co. The comparison between the solution by Eq. (24) and the 
discrete approximation for a variable mesh of 50 points is shown in Table I. This 

TABLE I 

K, X, Analytical Solution, Numerical Approximation 

1 0. 
2 l.O4000E-01 
3 2.12160E-01 
4 3.24646E-01 
5 4.41632E-01 
6 5.63296E-01 
7 6.89629E-01 
0 6.21423E-01 
9 9.56280E-01 

10 1.10061E+00 
11 1.24664E+OO 
12 1.40258E+OO 
13 1.56268E+OO 
14 1.72919E+OO 
15 1.90236E+OO 
16 2.08245E+OO 
17 2.26975E+OO 
18 2.46454E+OO 
19 2.6671ZE+OO 
20 2.87761E+OO 
21 3.09692E+OO 
22 3.32460E+OO 
23 3.56179E+OO 
24 3.f30826E+OO 
25 4.06459E+OO 
26 4.33117E+OO 
27 4.60842E+OO 
26 4.89676E+OO 
29 5.19663E+OO 
30 5.50649E+OO 
31 5.63263E+OO 
32 6.17015E+OO 
33 6.52095E+OO 
34 6 86579E+OO 
35 7.26522E+OO 
36 7.65983E+OO 
37 6.07022E+OO 
36 6.49703E+OO 
39 6.94091E+OO 
40 9.40255E+OO 
41 9.8f3265E+OO 
42 l.O38ZOE+Ol 
43 l.O9012E+Ol 
44. I 14413E+Ol 
45 1.20029E+Ol 
46 l.2587lE+OI 
47 1.31945E+Ol 
46 1.36263E+Ol 
49 1.44834E+Ol 
50 1.51667E+Ol 

0. 
2.27436E-03 
7.91131E-03 
1.5383tlE-02 
2.34853E-02 
3.13045E-02 
3.81959E-02 
4.37449E-02 
4.77326E-02 
5.00986E-02 
5.09062E-02 
5.03062E-02 
4.65089E-02 
4.57556E-02 
4.22969E-02 
3.63750E-02 
3.42106E-02 
2.99942E-02 
2.56616E-02 
2.19924E-02 
1.84112E-02 
1.51906E-02 
1.23559E-02 
9.90993E-03 
7.83646E-03 
6.11496E-03 
4.70517E-03 
3.57063E-03 
2.67267E-03 
1.97267E-03 
1.43556E-03 
I.O2979E-03 
7.27982E-04 
5.06964E-04 
3.4770lE-04 
2.347316-04 
1.559138-04 
l.O1639E-04 
6.53754E-05 
4.12212E-05 
2.55121E-05 
1.54876E-05 
9.21567E-06 
5.37061E-06 
3.06265E-06 
1.70789E-06 
9.30343E-07 
4.94617E-07 
2.56400E-07 
1.29464E-07 

1.73372E-10 
2.27429E-03 
7.91106E-03 
1.53&33E-02 
2.34644E-02 
3.13034E-02 
3.81945E-02 
4.374326-02 
4.77300E-02 
5.00968E-02 
5.09041E-02 
5.03041E-02 
4.65068E-02 
4.57535E-02 
4.22949E-02 
3.83731&-02 
3.42068E-02 
2.99926E-02 
2.56602E-02 
2.19912E-02 
1.84101E-02 
1.51696E-02 
1.23550E-02 
9.90922E-03 
7.63766E-03 
6.11445E-03 
4.70473E-03 
3.57046E-03 
2.67236E-03 
1.97240E-03 
1.43532E-03 
l.O2956E-03 
7.27795E-04 
5.06813E-04 
3.47542E-04 
2.3458lE-04 
1.55769E-04 
l.O1700E-04 
6.52396E-05 
4.10676E-05 
2.53600E-05 
1,53566E-05 
9.06519E-06 
5.24054E-06 
2.93303E-06 
1.57623E-06 
8.00776E-07 
3.65104E-07 
1.26916E-07 
0. 
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table demonstrates that there are no problems with round-off errors, matrix 
conditioning, or truncated boundary conditions. Equation (24) is slightly in error for 
the largest x values since the right-hand boundary is at 15.1667 rather than infinity. 

In the general case one would be replacing f in Eq. (1) by some complex, perhaps 
nonlinear, function of VI or by an operator on w in another dimension. The accuracy 

TABLE II 

K, X, Analytical Solution, Numerical Approximation 

1 0. 
2 l.O4000E-01 
3 2.12160E-01 
4 3.24646E-01 
5 4.41632E-01 
6 5.63298E-01 
7 6.69829E-01 
8 8.21423E-01 
9 9.58280E-01 

10 1.10061E+00 
11 1.24864E+OO 
12 1.40256E+OO 
13 1.56268E+OO 
14 1.72919E+OO 
15 1.90236E+OO 
16 2,08245E+OO 
17 2.26975E+OO 
1El 2,46454E+OO 
19 2.66712E+OO 
20 2.8778lE+OO 
21 3,09692E+OO 
22 3.32460E+OO 
23 3.56179E+OO 
24 3.80826E+OO 
25 4,06459E+OO 
26 4.33117E+OO 
27 4.60842E+OO 
20 4.89676E+OO 
29 5.19663E+OO 
30 5.5084SE+OO 
31 5.83283E+OO 
32 6.17015E+OO 
33 6.52095E+OO 
34 6.88579E+OO 
35 ?.26522E+OO 
36 7.65983E+OO 
37 8.07022E+OO 
38 8.49703E+OO 
39 8.94091E+oo 
40 9,40255E+OO 
41 9.86265E+OO 
42 l.O3820E+Ol 
43 1.09012E+01 
44 l.l4413E+Ol 
45 1.2002QE+Ol 
46 1.2587lE+Ol 
47 1.3194SE+Ol 
48 1.38263E+Ol 
49 1 .44834E+Ol 
50 1,51667E+Ol 

0. 
3.16853E-03 
l.l259lE-02 
2.23599E-02 
3.48524E-02 
4.74167E-02 
5.90281E-02 
6.89438E-02 
7.66815E-02 
.3.19908E-02 
8.48194E-02 
I3.52768E-02 
8.35951E-02 
8.00924E-02 
7.51364E-02 
6.91137E-02 
6.24029E-02 
5.53537E-02 
4.82715E-02 
4.14084E-02 
3.49584E-02 
2.90579E-02 
2.37890E-02 
1.91872E-02 
1.52499E-02 
l.l9459E-02 
9.22376E-03 
7.02044E-03 
5.26729E-03 
3.89540E-03 
2.83930E-03 
2.03935E-03 
1.4431lE-03 
l.O0580E-03 
6.90217E-04 
4.66172E-04 
3.09744E-04 
2.02367E-04 
1.29932E-04 
8.19365E-05 
5.07154E-05 
3.07898E-05 
1.83215E-05 
l.O6775E-05 
6.OEi944E-06 
3.39561E-06 
1.84970E-06 
9.83399E-07 
5.09776E-07 
2,57402E-07 

l.Q4224E-08 
3.15905E-03 
I.l2254E-02 
2.229313-02 
3.47485E-02 
4.72755E-02 
5.68525E-02 
6.87392E-02 
7.64543E-02 
8.17483E-02 
8.45691E-02 
8.50256E-02 
8.33493E-02 
7.985718-02 
7.49159E-02 
6.89109E-02 
6.22196E-02 
5.51906E-02 
4.812&E-02 
4.12846E-02 
3.48528E-02 
2.89691E-02 
2.37154E-02 
l.Q1272E-02 
1.52017E-02 
l.l9077E-02 
Q.l9405E-03 
6.99761E-03 
5.24999E-03 
3.88247E-03 
2.82977E-03 
2.0324lE-03 
1.438llE-03 
l.O0223E-03 
6.87677E-04 
4.64370E-04 
3.08459E-04 
2.01437E-04 
1.29243E-04 
8.14063E-05 
5.02893E-05 
3.0430lE-05 
1,80035E-05 
l.O385lE-05 
5.8124lE-06 
3.32763E-06 
1.58693E-06 
7.23542E-07 
2.51519E-07 
0. 
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of this method for such applications can be illustrated by comparing numerical and 
exact solutions for the case f(x) = 6(x, - x), y = 0. Since the solution is the Green’s 
function for the problem comparison with the exact solution shows the propagation of 
the errors introduced in the neighborhood of the 6 function by the approximation. In 
contrast with the first example, the accuracy deteriorates as the number of mesh 

TABLE III 

K, X, Analytical Solution, Numerical Approximation 

1 0. 
2 l.OOOOOE-01 
3 2.00000E-01 
4 3.00000E-01 
5 4.00000E-01 
6 5.00000E-01 
7 6.00000E-01 
0 7.00000E-01 
9 8.00000E-01 

10 9.00000E-01 
11 1.00000E+00 
12 1.20000E+OO 
13 1.40000E+OO 
14 1.60000E+00 
15 1.80000E+OO 
16 2.00000E+OO 
17 2.20000E+OO 
18 2.4000OE+OO 
19 2.60000E+OO 
20 2.80000E+OO 
21 3.00000E+00 
22 3.20000E+OO 
23 3.40000E+OO 
24 3.60000E+OO 
25 3.80000E+OO 
26 4.00000E+OO 
27 4 .20000E+OO 
28 4.40000E+OO 
29 4.60000E+OO 
30 4.80000E+OO 
31 5.00000E+OO 
32 5.20000E+OO 
33 5.40000E+OO 
34 5.60000E+00 
35 5.80000E+OO 
36 6.00000E+00 
37 6.20000E+OO 
38 6.40000E+OO 
39 6.60000E+00 
40 6.60000E+00 
41 7.00000E+OO 
42 8.00000E+OO 
43 9.00000E+OO 
44 1.00000E+01 
45 l.lOOOOE+0l 
46 1.20000E+Ol 
47 1.30000E+Ol 
48 1.40000E+Ol 
49 1.50000E+Ol 
50 1.60000E+01 

0. 
2.92630E-03 
1.011388-02 
1.96560E-02 
3.0175lE-02 
4.07045E-02 
5.05931E-02 
5.94290E-02 
6.69788E-02 
7.31394E-02 
7.790lOE-02 
8.34846E-02 
8.45677E-02 
8.22200E-02 
7.74875E-02 
?.12732E-02 
6.42967E-02 
5.70959E-02 
5.0049lE-02 
4.34037E-02 
3.73054E-02 
3.18248E-02 
2.69793E-02 
2.27506E-02 
1.90991E-02 
1.5973lE-02 
1.33158E-02 
l.l0704E-02 
9.18236E-03 
7.60132E-03 
6.28198E-03 
5.18424E-03 
4.27315E-03 
3.51856E-03 
2.89468E-03 
2.37966E-03 
1.95503E-03 
1.60532E-03 
1 .31756E-03 
l.O8097E-03 
8.86574E-04 
3.27912E-04 
1.20904E-04 
4.45197E-05 
1 .63841E-05 
6.02630E-06 
2.21783E-06 
8.15913E-07 
3.00160E-07 
l.l0423E-07 

-l.O6262E-08 
2.92508E-03 
l.O1095E-02 
l.S6475E-02 
3.016lSE-02 
4.06864E-02 
5.0570lE-02 
5.94015E-02 
6.69470E-02 
7.31040E-02 
7.78624E-02 
8.344llE-02 
8.45213E-02 
8.21725E-02 
7.74400E-02 
7.12268E-02 
6.42521E-02 
5.70536E-02 
5.00094E-02 
4.33665E-02 
3.72712E-02 
3.17938E-02 
2.69515E-02 
2.2726lE-02 
1.90776E-02 
1.59544E-02 
1.32998E-02 
1.10567E-02 
S.l7072E-03 
7.59148E-03 
6.27370E-03 
5.17729E-03 
4.26734E-03 
3.51370E-03 
2.89063E-03 
2.37628E-03 
l.S5222E-03 
1.60297E-03 
1.3156lE-03 
l.O7934E-03 
6.85214E-04 
3.27334E-04 
1.20620E-04 
4.4345lE-05 
1.6250lE-05 
5.90927E-06 
2.10433E-06 
7.04457E-07 
1.89459E-07 
0. 
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points is reduced since in this case the numerical solution is only an approximation. 
Table II shows the comparison for a 50-point mesh with x0 = 2.66712. The agreement 
between the exact solution and the numerical approximation is excellent, even though 
the 6 function is approximated by 

fk = -wQ+l -Xk-l), xk=xO, 

= 0, x,#--$,. 
(25) 

This discrete approximation method can also accommodate large discontinuous 
jumps in mesh spacing without loss of accuracy. Table III shows a similar 50-point 
case f(x) = 6(x, -x), y = 0, x0 = 2.60000, computed on a mesh which is uniform 
except for two places; at x = 1.0 the mesh size doubles from 0.1 to 0.2 and at x = 7.0 
the mesh size increases 5x from 0.2 to 1.0. Again the agreement between the exact 
and discrete approximation solutions is excellent. 

Table IV shows the previous case again but with half the number of mesh points. 
The accuracy of the discrete approximation is still good despite the extreme variation 
of the driving function and the crudeness of the mesh; however, the accuracy begins 
to deteriorate more noticibly when the number of mesh points is reduced further. 

TABLE IV 

K, X, Analytical Solution, Numerical Approximation 

2 
3 
4 
5 
6 
7 
0 
9 

10 
II 
12 
13 
14 
15 
16 
17 
10 
19 
20 
21 
22 
23 
24 
25 
26 

0. 
2.00000E-01 
4.00000E-01 
6.00000E-01 
0.00000E-01 
1.00000E+00 
1.40000E+OO 
1.60000E+00 
2.20000E+OO 
2.60000E+OO 
3.00000E+OO 
3.40000E+OO 
3.60000E+00 
4.20000E+OO 
4.60000E+OO 
5.00000E+OO 
5.40000E+OO 
5.60000E+OO 
6.20000E+OO 
6.60000E+00 
7.00000E+OO 
9.00000E+OO 
1.10000E+01 
1.30000E+Ol 
1.50000E+Ol 
1.70000E+Ol 

0. -1.31261E-10 
l.O1136E-02 1.00975E-02 
3.01751E-02 3.01246E-02 
5.059333-02 5.05051E-02 
6.697663-02 6.6657lE-02 
7.79010E-02 7.77526E-02 
6.456773-02 6.43097E-02 
7.74675E-02 7.73046E-02 
6.42967E-02 6.41246E-02 
5.0049lE-02 4.96955E-02 
3.73054E-02 3.71725E-02 
2.69793E-02 2.66709E-02 
1.9099lE-02 1.90152E-02 
1.33156E-02 1.32533E-02 
9.16236E-03 9.13712E-03 
6.26196E-03 6.24990E-03 
4.27315E-03 4.25075E-03 
2.69466E-03 2.67921E-03 
1.95503E-03 1.94442E-03 
1.31756E-03 1.31033E-03 
6.66574E-04 6.61657E-04 
1.20904E-04 1.20169E-04 
1.63641E-05 1.62519E-05 
2.21763E-06 2.16499E-06 
3.00160E-07 2.56061E-07 
4.06225E-06 0. 
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CONCLUSIONS 

The exponential operator method of approximating derivatives and partial 
derivatives is easy to program and provides good accuracy for higher order complex 
differential operators on variable meshes. Boundary conditions are included naturally 
such that the approximations at points adjacent to the boundaries are stated in terms 
of derivatives at the boundary. Thus the desired boundary conditions can be specified 
exactly without the use of virtual mesh points or other approximations. Because the 
mesh point coeffkients are derived from an analytic solution to a local approximation 
of the differential or partial differential equation the method can tolerate large jumps 
in mesh spacing without loss of accuracy. 
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